

Categorical Data

testing associations between categorical variables

Today's goal:

Teach you about methods to test associations between two or more categorical variables

Outline:

- Two variables: Chi-square test
- More than two variables: loglinear analysis (bonus)

Chi-square test

testing associations between two categorical variables

Is there a relation between reward and whether a cat can learn to dance?

	Food	Affection	Total
Dance	28	48	76
No dance	10	114	124
Total	38	162	200

What values would we expect if there was **no relation**? row total * column total / grand total

	Food	Affection	Total
Dance	14.44	61.56	76
No dance	23.56	100.44	124
Total	38	162	200

What is the **deviation** from this model?

(observed – model)²

		Food	Affection	Total
	Dance	28	48	76
	No dance	10	114	124
,	Total	38	162	200

	Food	Affection	Total
Dance	14.44	61.56	76
No dance	23.56	100.44	124
Total	38	162	200

	Food	Affection
Dance	183.9	-183.9
No dance	-183.9	183.9

Can we **standardize** these deviations?

 $\Sigma((observed - model)^2 / model)$

	Food	Affection
Dance	183.9	-183.9
No dance	-183.9	183.9

	Food	Affection	Total
Dance	14.44	61.56	76
No dance	23.56	100.44	124
Total	38	162	200

	Food	Affection	
Dance	12.73	7.80	= 25.35
No dance	2.99	1.83	

 Σ ((observed – model)² / model) is a χ^2 statistic It has (r–1)(c–1) degrees of freedom

Chi-square works well for large samples

For smaller samples, make Yates's correction:

 $\Sigma((|observed - model| - 0.5)^2 / model)$

For even smaller samples (expected count < 5 for more than 20% of the cells), use Fisher's exact test

Independence

Expected frequencies > 5 for at least 20% of the table All expected frequencies should be > 1 Use Fisher's exact test if not

Dataset "cats.dat"

Effect of reward on cats' ability to learn how to dance

Variables:

Training: whether the cat got food or affection as reward Dance: whether the cat learned how to dance (Yes/No)

Or, use a table:

catTable <- cbind("Dance" = c("Food"=28, "Affection"= 48), "No dance" = c("Food" = 10, "Affection" = 114))

Plotting from the table:

mosaicplot(catTable,shade=T)

Run the chi-square test (in package "gmodels"):

CrossTable(cats\$Training, cats\$Dance, expected=T, fisher=T, sresid=T,format="SPSS")

Or from the table:

CrossTable(catTable, expected=T, fisher=T, sresid=T,format="SPSS")

Interpretation of table:

- Observed count in this cell and predicted count in this cell
- Standardized deviance in this cell (adds up to Chi-square)
- Percentage in this row (70.4% of cats who got affection did not learn how to dance, 29.6% did)
- Percentage in this column (91.9% of cats who did not learn how to dance got affection, 8.1% got food)
- Overall percentage
- Standardized residual (see later)

Interpretation of test results:

- Chi-square test: apparently there is a strong association, because $\chi^2(1) = 25.36$ has a p < .0001
- Chi-square with Yates' correction is very similar (23.52)
- Fisher's exact test also finds significance (the remaining two rows are one-sided exact tests)
- Minimum frequency is 14.44, which is larger than the required 5

Like ANOVA, when there are more than 2 conditions/levels, the chi-square finds out **if** there is an effect, not **where** the effect is

Like ANOVA, we can break down the significant test into smaller portions

For the chi-square test, we use standardized residuals:

 $z = (observed - model)/\sqrt{(model)}$

This is the "unsquared" version of the deviation in each cell And guess what... It's a z-score!

When food was used as a reward:

...significantly more cats than expected danced (z = 3.57) ...and significantly fewer cats than expected didn't dance (z = -2.79)

When affection was used as a reward:

No significant differences from what we expected

The significance is mainly driven by the food condition

(This stuff gets more interesting in larger tables)

A chi-square effect in a 2x2 table can be expressed as an odds ratio

Odds of dancing after food = 28/10 = 2.8 Odds of dancing after affection = 48/114 = 0.421 Odds ratio: 2.8/0.421 = 6.65

In R, Fisher's exact test gives you a (better) odds ratio, plus a confidence interval

If this interval doesn't cross 1, the odds ratio is significant!

There was a significant association between the type of training and whether a cat would learn how to dance $\chi^2(1) = 25.36$, p < .001. The odds of cats dancing were 6.58 times higher if they were trained with food than if they were trained with affection (95% Cl: [2.84, 16.43]).

AB As a logistic reg

Since Dance has 2 categories run this as a logistic regression: c1 <- glm(Dance ~ Training, data=cats, family=binomial) Odds ratio and CI are similar:

exp(c1\$coefficients) exp(confint(c1))

Chi-square is similar as well:

anova(c1) 1-pchisq(c1\$null.deviance-c1\$deviance, 1)

Dataset "CatsandDogs.dat" -> rename to "catdog" Effect of reward on cats' and dogs' ability to dance

Variables:

- Animal: whether this was a cat or a dog
- Training: whether the animal got food or affection
- Dance: whether the animal learned how to dance

Plotting:

mosaicplot(table(catdog), shade=T)

Logistic regression:

c2 <- glm(Dance ~ Training*Animal, data=catdog, family=binomial)

Odds ratios and Cls:

exp(c2\$coefficients); exp(confint(c2))

Chi-squares:

Anova(c2, type=3)

For a Y with more than 2 categories: use loglinear analysis

Dataset "favorite.csv"

Relationship between favorite party game and party snack

Variables:

Game: favorite party game

Snack: favorite party snack

Plotting:

mosaicplot(table(favorite), shade=T)

Run the chi-square test:

CrossTable(favorite\$Game, favorite\$Food, expected=T, fisher=T, sresid=T,format="SPSS")

Interpretation of test results:

- Chi-square test: **X**²(6) = 14.51, p = .024
- Fisher's exact test also finds significance
- Minimum frequency is 6, which is larger than the required 5

AB Finding the effect

Analyze residuals:

Poker players are less likely to prefer chips (z = -1.981) Poker players are more likely to prefer cookies (z = 2.145)

We can calculate an odds ratio, but only in a 2x2 table. So let's compare poker players vs. others, and cookies vs. chips:

- Odds of cookies for poker players = 12/3 = 4.00
- Odds of cookies for others = 18/38 = 0.474
- Odds ratio: 4.00/0.474 = 8.44

There was a significant association between the favorite party game (Monopoly, poker, Trivial Pursuit, or Wii Bowling) and favorite party snack (chips and dip, cookies, or pizza rolls) $\chi^2(6) = 14.51$, p = .024. Upon analyzing the effect, we found that the odds of liking cookies rather than chips were 8.44 times higher for poker players than for others.

Loglinear analysis

testing associations between several categorical variables (this will **not** be on the test)

We can see a chi-square test as a Poisson regression with 4 data points:

Training = Affection	Dance	Interaction	Frequency
0	0	0	10
0	1	0	28
1	0	0	114
1	1	1	48

AB Loglinear analysis

ln(Frq) = lm(model) + ln(e)

Saturated model:

- $ln(sat) = a + b_1Training + b_2Dance + b_3Interaction$
- b3 represents the association between Training and Dance
- This model is saturated because there is no error!

Simplified model (no association):

In(model) = a + b₁Training + b₂Dance

Chi-square test: Is In(model) significantly worse than In(sat)?

AB Loglinear analysis

Extension: If we have three variables, our saturated model becomes:

 $ln(model) = a + b_1A + b_2B + b_3C + b_4AB + b_5AC + b_6BC + b_7ABC$

Backward elimination:

What if we remove ABC? Much worse? Then stop! If not: What if we remove AB, AC, or BC? Much worse? Stop! If not: A, B, and C are independent

We use the likelihood ratio $(L\chi^2_{change} = L\chi^2_{current} - L\chi^2_{previous})$

Independence

Expected frequencies > 5 for at least 20% of the table

- All expected frequencies should be > 1
- If not: collect more data, collapse across a variable, collapse across categories

Loglinear analysis works with a contingency table, so we need to save one first:

- catdogTable <- xtabs(~ Animal + Training + Dance, data = catdog)
- catdogTable

Create a saturated model:

- saturated <- loglm(~ Animal*Training*Dance, data =
 catdogTable)</pre>
- summary(saturated) bottom part shows perfect fit

Remove the three-way interaction:

threeway <- update(saturated, .~. - Animal:Training:Dance) summary(threeway) — Fit is not as good...

Compare the models: anova(saturated, threeway)

AB Let's continue...

Create three models removing each two-way interaction: trainingDance <- update(threeWay, .~. - Training:Dance) animalDance <- update(threeWay, .~. - Animal:Dance) animalTraining <- update(threeWay, .~. - Animal:Training)

Get the ANOVAs:

anova(threeway, trainingDance) — significant! anova(threeway, animalDance) — significant! anova(threeway, animalTraining) — significant!

OK, so there's a 3-way effect... How do we interpret it?

Let's plot it!

mosaicplot(catdogTable, shade=T)

Interpretation:

- Both cats and dogs are more likely to dance for food
- Dogs are more likely to dance for affection, too
- Cats are less likely to dance for affection

You can now do separate chi-squares in separate groups

You already did a chi-square for cats:

CrossTable(cats\$Training, cats\$Dance, expected=T, fisher=T, sresid=T,format="SPSS")

For dogs, first create justDogs <- subset(catdog, Animal=="Dog"):

CrossTable(justDogs\$Training, justDogs\$Dance, expected=T, fisher=T, sresid=T,format="SPSS")

Get the odds ratio for cats and dogs:

- Odds ratio for cats: 6.65
- Odds ratio for dogs: 0.35 (see Fisher test)

Interpretation

- Dogs are 2.86 times more likely to dance for affection than for food (1/0.35 = 2.90)
- Cats are 6.65 times more likely to dance for food than for affection

The three-way loglinear analysis demonstrated that the three-way interaction of Animal, Training and Dance was significant, $\chi^2(1) = 20.31$, p < .001. We subsequently performed separate analyses for cats and dogs.

For cats, there was a significant association between the type of training and whether they would learn how to dance $\chi^2(1) = 25.36$, p < .001. The odds of cats dancing were 6.58 times higher if they were trained with food than if they were trained with affection.

For dogs, there was also a significant association between the type of training and whether they would learn how to dance $\chi^2(1) = 3.93$, p < .05. However, in contrasts to cats, the odds of dogs dancing were 2.90 times *lower* if they were trained with food than if they were trained with affection.

"It is the mark of a truly intelligent person to be moved by statistics."

George Bernard Shaw